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24 Highlights

25 A highly adaptable inversion framework is adapted to different groundwater pollution
26  scenarios.

27  Synergetic identification of source information, hydraulic conductivity and boundary
28  condition in PSC.

29  The artificial hummingbird algorithm is applied to solve the optimized model.



https://doi.org/10.5194/egusphere-2025-2083
Preprint. Discussion started: 20 May 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

30  Abstract

31  Effectively remediating groundwater contamination relies on the precise determination
32  ofits sources. In recent years, a growing research focus has been placed on concurrently
33  estimating hydrogeological characteristics and locating pollutant origins. However, the
34  identification of precise synergistic identification of point and areal contamination
35 sources of groundwater and combined hydrogeological parameters has not been
36 effectively solved. This study developed an inversion framework that integrates
37  machine learning surrogates with the artificial hummingbird algorithm (AHA). The
38  surrogate models approximating the simulation system were constructed using both
39  backpropagation neural networks (BPNN) and Kriging techniques. The AHA was then
40  employed to solve the optimized model, and its performance was benchmarked against
41  particle swarm optimization (PSO) and the sparrow search algorithm (SSA). The
42  applicability of this inversion framework was assessed by application to point sources
43 of contamination (PSC) and areal source contamination (ASC). The robustness of the
44  framework was verified through application to scenarios with different noise levels.
45  The results showed that surrogate model constructed by the BPNN method provided
46  estimates that were closer to those of the simulation model in comparison to the kriging
47  method, coefficient of determination (R?) is 0.9994 and mean relative error (MRE) is
48 3.70% in PSC, and R? is 0.9989 and MRE is 4.48% in ASC. The performance of the
49  AHA exceeded those of the PSO and the SSA. In PSC, MRE of the identification result
50 s 1.58%; In ASC, MRE of the identification result is 2.03%, with the AHA able to

51  rapidly and accurately identify the global optimum and improve the inversion efficiency.
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52

53

54

55

56

The proposed inversion framework was demonstrated to apply to both groundwater
PSC and ASC problems with strong robustness, providing a reliable basis for
groundwater pollution remediation and management.

Keywords: Groundwater contamination identification; Synergistic identification; Point

and areal sources contamination; Surrogate model; Artificial hummingbird algorithm
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57 1 Introduction

58  Groundwater pollution adversely affects human production and life (Wang et al., 2022;
59  Liu et al., 2024). The remediation of groundwater contamination is important for
60 ensuring human health and socioeconomic development. However, groundwater
61  contamination is difficult to detect and treat due to its hidden nature, thereby
62  complicating the assessment of groundwater pollution risk and contamination liability
63  (Li et al., 2021). Remediation requires the identification of sources of groundwater
64  contamination (location, number, release history, etc.) and hydrogeological conditions
65  (Daranond et al., 2020; Pan et al., 2022b). However, directly obtaining this information
66  can pose a challenge, with a proven method being the identification of groundwater
67  contamination by inversion of limited observational data.

68 Inversion of groundwater aquifer hydrogeologic parameters and pollution source
69  information is a widely studied topic. In past studies on groundwater contamination
70  identification (GCI), many researchers have focused on the separate identification of
71 hydrogeological parameters or pollution source information. For example, Singh and
72 Datta (2007) utilized backpropagation-based artificial neural network techniques
73 specifically for the identification of groundwater pollution sources. Similarly, Mahar
74 and Datta (2000) employed a nonlinear optimization model to identify the location,
75  duration, and magnitude of the contamination source. Liu et al. (2022) inverted
76 hydrogeological parameters through a simulation-optimization approach, while Wang
77 et al. (2024a) combined three different inversion algorithms and a kriging surrogate

78  model to invert hydraulic conductivity. While simplifying the problem, these methods
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79  allow researchers to focus on specific aspects. However, although the individual
80 identification method can be effective in some cases, it often overlooks the
81 interconnectivity between hydrogeological parameters and pollution sources.

82 Currently, the simultaneous identification of hydrogeological parameters and
83  pollution source information is gaining increasing attention in research. Researchers
84  have employed various advanced technologies to achieve this goal. Wang et al. (2021)
85 utilized a parallelized heuristic algorithm to concurrently determine both aquifer
86  characteristics and the groundwater pollution sources. Pan et al. (2021) integrated a
87  Bayesian-regularized deep neural network surrogate to jointly infer pollution source
88  details and hydraulic conductivity. Hou et al. (2021) integrated homotopy-based inverse
89  optimization theory with a multi-kernel extreme learning machine to finish the co-
90 identification of contamination sources and aquifer parameters. Luo et al. (2023)
91  leveraged machine learning techniques to establish an inverse relationship between
92  model outputs and inputs, enabling fast and simultaneous retrieval of pollution source
93  attributes and hydrogeological properties. Although these methods have advanced the
94  field, improving recognition accuracy remains a major challenge in the simultaneous
95 identification process.

96 The simulation-optimization method has been widely applied in GCI research
97  because of its robust mathematical foundation (Mirghani et al., 2009) and its ability to
98  identify multiple variables simultaneously. To enhance both identification accuracy and
99 efficiency using simulation-optimization, two key approaches are employed: one is to

100  optimize the model solution method for better performance, and the other is to construct
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101  a surrogate model with high approximation accuracy. Optimizing the model solution
102 method is essential. Since heuristic optimization algorithms are more capable of
103  identifying global optima, many have been applied to GCI. Mirghani et al. (2012)
104  implemented a genetic algorithm within optimization to identify sources of
105  contamination. Jiang et al. (2013) combined a harmony search algorithm with a
106  contamination transport simulation model to characterize contamination sources.
107  Additional methods, such as simulated annealing (Rao, 2006; Yeh et al., 2007; Jha and
108  Datta, 2013) and sparrow search algorithms (SSA) (Pan et al., 2022b), have also been
109  applied to GCI. However, increasing dimensionality and complexity in GCI problems
110  make it difficult for many optimization algorithms to efficiently search for global
111 optima. Constructing high-accuracy surrogate models is another crucial strategy.
112 Surrogate models can significantly reduce computation time and improve inversion
113 efficiency. Among these models, the widely used kriging (Chugh et al., 2018; Zhang et
114  al., 2019; Jiang et al., 2020) and backpropagation neural network (BPNN) (Sargolzaei
115  etal, 2012; Zhang et al., 2021; Wang et al., 2024b) methods offer high flexibility and
116  strong nonlinear fitting capabilities. Despite these advances, previous studies have
117  overly focused on point source contamination (PSC) or areal source contamination
118  (ASC) scenarios in isolation. However, the identification of precise synergistic
119  identification of PSC and ASC of groundwater and combined hydrogeological
120  parameters has not been effectively solved.

121 Based on the above problems, this paper proposes an inversion framework

122  integrating a machine learning surrogate model with the artificial hummingbird
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123 algorithm (AHA) using the simulation-optimization method (Fig. 1). Both BPNN and
124  kriging were utilized to develop surrogate models for the simulation model. AHA was
125  introduced to solve the optimization model, with its solution results compared against
126 those of PSO and SSA. The applicability of this inversion framework was evaluated
127  through its application to both PSC and ASC scenarios. The objectives of this study
128  were: (1) To assess the performance of the surrogate models constructed by BPNN and
129  kriging, and to identify the model with better practicality and adaptability to replace the
130  simulation model; (2) To examine the advantages of AHA for solving the optimization
131 model by comparing it with other optimization algorithms under the same conditions,
132 and to further enhance the model’s solving accuracy; (3) To apply the simulation-
133 optimization-based inversion framework to complete the inversion tasks for PSC and
134  ASC scenarios and validate the framework’s effectiveness, while also evaluating its
135  robustness through tests under different noise conditions.

136 2. Methodology

137 2.1. Simulation model

138  In this study, the numerical groundwater simulation framework comprised both a flow
139  component and a solute transport module. The fundamental two-dimensional (2D)

140  partial differential equation governing groundwater flow is formulated as follows:

0 oH oH .
141 —(Kj(H-2)—>)+W =pu—— (x,y) €S i, jel2t>0 1
axi(“( )50 rr y)eSije )

|
142 where Kj; is hydraulic conductivity, W is the volumetric flux per unit volume, x is the
143 specific yield, H is the water level elevation, z is the elevation of the aquifer floor, and

144  §is the boundary of the spatial domain.
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147  where C denotes the contaminant concentration in groundwater, ¢ is the temporal

148  variable, u; indicates the average flow velocity, R accounts for source and sink

149  contributions, Dj refers to the hydrodynamic dispersion tensor, and n. represents the

150  effective porosity of the medium. To obtain numerical solutions for the groundwater

151  flow and solute transport equations, the MODFLOW and MT3DMS packages were

152  employed (Asher et al., 2015).

153 2.2. Kriging method

154  Kriging was employed to develop the underlying framework of the approach by

155  capturing both the correlation and stochastic variability of variables within a confined

156  spatial domain, thereby enabling the estimation of optimal regional values. The

157  association between input and output variables is described through a regression-based

158  expression as shown below (Zhao et al., 2022a):

159 y(x) :Zk:ﬁli f.(X) +2(x) “)
i=1

160  where P(x) is the estimated value of pollutant concentration y(x), f;(x)(i =

161 1,---,k) is the basis function of the known regression model, and z(x) is the random

162  part.

163  The following equations were satisfied:

E(z(x))=0
164 D(z(x))=0? (%)
cov[z(xi), z(xj)] =o’R(X,X;)

10
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165  where R(x;, x;) is the correlation function between the sampled point x; and x;.
166 (i=12,--,mj=12-,m)

167 The Gaussian model is commonly used:
m 2

168 R(xi,xj):exp[—zek‘xkl _ij‘ j (6)
k=1

169  where 8, is a coefficient to be determined, which can be obtained by calculation.

170 2.3. The BPNN method

171 A typical back-propagation neural network (BPNN) is composed of three
172 fundamental components (Fig. 2): (1) an input layer, (2) the hidden layers, and (3) an
173 output layer. The computation process proceeds in two main phases: forward
174  propagation and backward propagation (Chen et al., 2010; Zhang et al., 2018).

175 1) During forward propagation, data are introduced into the network via the input
176  layer, and subsequently processed through successive layers to yield the final output.

177  BPNNs frequently employ a nonlinear sigmoid activation function:

178 F(x)= — %)
l+e
179 The calculation of the forward transmission output layer is:
1
180 I, => w0 +b 0,=f(l)=—+ ®)
i=1 l+e’

181  where O; represents the output of neuron 7, O; is the output of neuron j, b is the bias
182  term, and W is the weight of the connection between neuron i and neuron ;.

183 2) Backward propagation involves the random assignment of the weight of the first
184  positive feedback process within the output layer. The adjustment of the parameters of
185 the entire network is required. Network adjustment is performed by minimizing the

186  discrepancy between the predicted output and the target category in the output layer.
1
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187  Specifically, for the output layer:

188 E;=0,1-0,)(T;-0)) )
189  where E; represents the error value at the jth node and 7; denotes the corresponding
190  output. The hidden layer's output is determined by summing the weighted contributions
191  from the errors of the lower nodes:

192 E; =0,(1-0))>  EW, (10)
193  where E} is the error gradient for the subsequent node k and Wj;is the weight connecting
194  node to t node k. Following error calculation, the weight is adjusted according to the

195  error gradient:
AW; =nE J-Oi

196 .
W, =W, +AW,

(11)

197  where 7 is the learning rate.

198 2.4 Artificial Hummingbird Algorithm (AHA)

199  The AHA consists of three main elements: food sources, hummingbirds, and the visit
200  table. Hummingbirds typically assess food sources based on factors such as nectar
201  quality, individual flower nectar content, and replenishment rates. For simplicity, it can
202 be assumed that all food sources share the same flower type and number.
203  Hummingbirds within a population can exchange information, be assigned to specific
204  food sources, track nectar replenishment rates, and record the duration each food source
205  remains unvisited. The visit table records the time since a hummingbird last visited a
206  food source, and is used to assign visit levels; hummingbirds can harvest more nectar
207 by first accessing food sources with higher access levels, following which food sources

208  with the highest nectar replenishment rate are chosen (Zhao et al., 2022b). The AHA is
12
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209  algorithmically described below.

210 (1) Initialization

211 Firstly, » hummingbirds are randomly placed on n food sources:
212 X =Low+r-(Up—Low) i=1...,n (12)
213 The access table for the food source is then initialized:
0 if i=j . .
214 VT, ;= .o i=L.nj=1...,n (13)
' null  i=j

215  where Low and Up are the lower and upper boundaries for a d-dimensional problem
216  respectively, r represents a random vector of [0,1], and x; is the position of the ith food
217  source. Fori = j, VT;; = null indicates the sourcing of food from a specific source.
218  Fori # j, VT;; = 0 indicates that the ith hummingbird has just visited the jth food

219  source in the current iteration.

220 (2) Guided foraging

221 Hummingbirds identify food sources in two steps: (1) identifying the food source
222 with the highest access level; (2) selecting the food source with the highest nectar
223 replenishment rate. After identifying the target food source, the hummingbird can fly to
224 the target source to feed. During foraging, direction switching vectors used to control
225  the availability of one or more directions in the D-dimensional space are introduced to
226  model three flight skills: omnidirectional, diagonal, and axial flight. These flight

227  models can be extended to the d-D space, and the mathematical model of axial flight is:

13
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245

Do — 1 if i=randi([1,d]) i—1..d (14)
0 else
Diagonal flight is defined as:
1 if i=P()),jelL,k]
D ={ P=randperm(k),k [2,[r,-(d -2)]+1] i=1,...,d (15)
0 else
Omnidirectional flight is defined as:
DP=1 i=1...,d (16)

where randi([1,d]) is a randomly generated integer from 1 to d, randperm(k)
creates a random permutation of integers from 1 to &, and 71 is a random number in the

range of 0 to 1.

Hummingbirds can access and obtain target food sources through these flight abilities.
New food sources identified during the search are recorded along with previously
identified food sources. The guided foraging behavior and candidate food sources can

be represented as:
vi(t+D) = X tar t)+a-D-(x () - X tar ®) (17)
a~N(0,1 (18)

where x;.q,-(t) is the location of the food source that the ith hummingbird plans to
visit, x;(t) represents the location of the ith food source at time ¢, and « is a leading

factor obeying a normal distribution.

The location of the ith food source is updated as:

14

EGUsphere\
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X1 o)< v, (t+D)

(19)
VD) Fx(0)> Fv (D)

246 X, (t+1) :{

247  where f(-) represents the function fitness value. The formula for updating the location
248  can contribute to the preferential selection of food sources with a high nectar supply

249 rate.
250  (3) Territorial foraging

251 Since the quality of food sources within a foraging area may vary, hummingbirds
252  actively search within that area. The regional foraging strategies and candidate food

253  sources of hummingbirds can be represented as:

254 V,(t+21) =x () +b-D-x(t) (20)
255 b~ N(0,1) 21
256  where b is a territorial factor obeying a normal distribution. Eq. (20) allows different

257  hummingbirds to use their specific flight skills to identify new food sources near the

258  target source.
259  (4) Migration foraging

260 Migration coefficients are defined in the AHA algorithm to prevent the generation of
261  local optimums. The exceedance of the number of iterations of the set migration
262  coefficient results in the hummingbird located in the worst food source repeating a
263  search for a new food source across the entire search range and the subsequent updating

264  of the visit table.

15
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265 (t+1) =Low+r-(Up—Low) (22)

Xwar

266  where x,,, is the food source with the worst nectar supply rate. The migration

267  coefficient relative to population size can be defined as.
268 M =2n (23)

269 3. Case studies

270  The present study designed a groundwater PSC case study and an ASC case study to
271 verify the applicability of the proposed GCI framework. Since the present study
272  established two hypothetical examples, a set of variables to be identified and
273 background variables for input into the groundwater contamination simulation model
274  were established for each example for forward computation. The pollutant
275  concentrations monitored at wells were used as observed data. The robustness of the
276  inversion framework was verified by adding random noise to the observed data,
277  expressed as:

278 a, =a(l+1-rand), 1 =0.5%,1% and 2% (24)
279  where a represents the observation data, @ indicates observation data with added
280  noise, / is the max disturbance range, and rand is a random number between —1 and 1.
281 3.1 Case study 1: groundwater PSC

282  The study area is 2,500 m and 1,400 m from east to west and north to south, respectively,
283  with topography decreasing from west to east and groundwater flow from northwest to
284  southeast. The study area contains an inhomogeneous isotropic aquifer, and the present

285 study focused on a layer of diving aquifer with a thickness of 10 m (Table 1).

16
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286  Groundwater flow was represented as 2D steady flow, and the study area was divided
287  into three areas according to differences in hydraulic conductivities. Since the northern
288  and southern parts of the study area are very weakly permeable formations, they were
289  generalized in the present study as no-flow boundaries. Rivers formed the boundaries
290  ofthe western and eastern parts, and were generalized as specific head boundaries (Fig.
291 3).

292 In this case study, the variables to be identified fell into three main categories: (1)
293  head values at the specific head boundaries. including Hi and H»; (2) hydraulic
294  conductivities for each part of the study area, including K1, K>, and K3; (3) the intensities
295  of'the release of pollutants from the two sources during the release periods: S = SaTb; a
296 =1,2;andb=1,2,3,4,5 (Table 3). SaT} represents the intensity of pollution source a
297  during the bth stress period,; this case study had a study period of 10 years (Table 1, Fig.
298  4), with both sources only releasing pollutants in the first five years (Table 2). Five
299  wells were established to monitor the concentrations of groundwater contaminants once
300 ayear. The study area was spatially discretized into 50 m x 50 m grids (Table 1).

301 3.2 Case study 2: groundwater ASC

302  The present study selected the hypothetical case study used by Pan et al. (2022a) as a
303  case study. The site has an area of 5 km?, with a length of 2.5 km and width of 2 km
304  from east to west and south to north, respectively. Groundwater flows from northwest
305  to southeast. The study area was conceptualized as an inhomogeneous isotropic aquifer
306  and the current study focused on a diving aquifer, in which flow was represented as 2D
307 steady flow. The study area’s aquifers were categorized into four zones based on

17
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308  hydraulic conductivity, labeled K to Ks. The western and eastern river boundaries were
309 modeled as specified head boundaries, while the northern and southern regions,
310 characterized by low permeability granite, were treated as no-flow boundaries (Fig. 5,
311  Table 4).

312 Within this case study, the variables to be identified fell into two categories: (1)
313  hydraulic conductivities of each part of the study area, including Ki to K4; (2) the
314  intensities of pollutants released by three areal sources of contamination: S = SaTv; a =
315 1,2,3;and b=1, 2, 3,4, 5 (Table 5). SaTt indicates the intensity of pollution source a
316  during the bth stress period. A total of nine monitoring wells were established to monitor
317  the concentrations of groundwater contaminants once a year (Fig. 6). The study area
318  was spatially discretized as 20 m x 20 m grids (Table 4).

319 4. Model construction

320 4.1 Establishment of surrogate models

321  The present study established two case studies: the PSC and the ASC. The variables to
322  be identified for the PSC case study included three categories with 15 dimensions,
323  whereas those to be identified for the ASC case study included two categories with 19
324  dimensions. The present study used the Latin hypercube method to sample within the
325  feasible domain of the variables to be identified. This sampling process was
326  implemented in MATLAB. Sample groups for the PSC and ASC case studies totaled
327 390 and 490, respectively, and the input sample dataset was generated by random
328  combination.

329 The parameters obtained from the above sampling were input into the groundwater

18
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330 simulation model. The simulation model was then run to obtain the pollutant
331  concentrations at the 390 and 490 monitoring groups in the PSC and ASC case studies,
332  respectively. These simulated pollutant concentrations were used as the output sample
333  dataset, and the output sample dataset was combined with the input sample dataset to
334  form the input-output sample dataset. The kriging and BPNN methods were used to
335  establish the surrogate models of the simulation model. The first 350 and 440 groups
336 of the PSC and ASC case input-output sample datasets, respectively, were used as
337 training samples in each case study to construct surrogate models, while the remaining
338 40 and 50 groups were used as test samples to evaluate the accuracy of the surrogate
339  models.

340 The present study applied the coefficient of determination (R?), the mean relative
341  error (MRE), and the root mean square error (RMSE) to assess the accuracy of the fit

342  of the estimations of the surrogate models to the output of the simulation model.

343 1) R?: The closer R?to 1, the more accurate the surrogate model is.

X 2

Z (Yi - yi)

2 i=:

344 R :1—L$—————; (25)

z (yi - 7| )

i=1
345 2) MRE: The average deviation between the outputs of the surrogate model and the

346  outputs of the simulation model.

Zn: yi_yi

i Yi

347 MRE =

(26)
348 3) RMSE: The value of the RMSE is inversely proportional to the fitting accuracy

349  of the surrogate model.
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350 RMSE = 7)

351 where Y, is the average true value, n is the number of samples, ¥; is the output of

352 the surrogate model, y; is the true value of the variable to be identified.

353 4.2 Establishment of the optimization models
354  This study employed the CGI through the S-O method, which consists of two main
355 components: a groundwater contaminant transport simulation model and an
356  optimization model aimed at minimizing the least squares error between the simulated
357  and true values. To reduce the computational burden caused by repeated simulation
358  calls, a surrogate model was used in place of the simulation model. While the same
359  objective function was applied in both case studies, there were minor variations in the
360  decision variables and constraints. The decision variables chosen for case study 1
361 included the boundary head values, the hydraulic conductivities of the site, and the
362  release history of the contaminant source; those for case study 2 included the hydraulic
363  conductivities of the site and the release history of the contaminant source. The
364  constraint conditions were influenced by the decision variables. The optimization was
365  expressed as:

n

z=miny (C,-C,)’
m=1

C="f(H,K,s)
Casel:ist<C, <C<C,
5 <s<s,
C=1f(K,s)
Case2:st<C, <C<C,
5, <s<s,

20

366 28)
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367 where z is the objective function, C,, is the monitored pollutant concentration in the
368  mth monitoring well, C,, is the simulated pollutant concentration in the mth
369  monitoring well, C is the pollutant concentration, H is the head value at the boundary,
370 s isthe pollution source intensity, k represents the hydraulic conductivities of the site,
371  C;, and Cy are the upper and lower bound values of pollutant concentration,
372  respectively, and s; and s, are the upper and lower bound values of pollution source
373  intensity, respectively.

374 The AHA was used to identify the optimal combination of parameters according to
375 the objective function through multiple iterative calculations, with this parameter set
376  adopted as the result of inversion. The numbers of hummingbird populations and
377  iterations were set to 500 and 1,000, respectively.

378 5. Results

379 5.1 Surrogate models

380  The surrogate model for case study 1 using the kriging method achieved an R? 0f 0.9942,
381  MRE of 13.43%, and RMSE of 11.8262 (Table 6), while the BPNN method produced
382  values of 0.9994, 3.70%, and 3.6526, respectively (Table 6). Similarly, for case study
383 2, the kriging method yielded an R? of 0.9837, MRE of 9.98%, and RMSE of 37.7547,
384  whereas the BPNN method provided corresponding values of 0.9989, 3.70%, and
385  3.6526 (Table 6). The BPNN method demonstrated superior goodness-of-fit statistics
386  compared to the kriging method in both case studies.

387 While the simulation model required 500 hours for 1,000 iterations, the BPNN
388  surrogate model completed the same number of iterations in 67 seconds, significantly
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389  reducing the computation time.

390 5.2 Optimization algorithms

391  The BPNN surrogate model was embedded into the optimization model to optimize the
392  parameter combination according to the objective function. This study employed AHA
393  within the optimization process and compared its performance against SSA and PSO
394  under the same population size and number of iterations. In the optimization of case
395  study 1, PSO failed to converge after reaching the maximum number of iterations, while
396  AHA and SSA converged after 120 and 350 iterations, respectively (Fig. 7a). For case
397  study 2, both PSO and SSA failed to converge within the maximum number of iterations,
398  whereas AHA converged after 150 iterations (Fig. 7b).

399 Given the results from case study 1, where both AHA and SSA converged, the
400  subsequent analysis focused on these two algorithms. AHA achieved an optimal search
401  value closer to the true value and reached the global optimum, while SSA settled at a
402 local optimum (Fig. 8). These results demonstrate that AHA not only converged faster
403  than SSA but also identified the global optimum, thereby improving the accuracy and
404  efficiency of GCIL.

405 5.3 Inversion results and robustness assessment

406  The BPNN-AHA inversion framework developed in this study was applied to identify
407  groundwater PSC and ASC and obtain inversion values. To verify the framework’s
408  robustness and reliability, random noise levels of 0.5%, 1%, and 2% were added to the
409  observed data. The average relative errors under each noise level were recorded (Table
410 7, Table 8). The highest inversion accuracy was achieved in the noise-free case for both
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411  case study 1 and case study 2, with average relative errors of 1.58% and 2.03%,
412 respectively (Table 9). At a 0.5% noise level, the average relative errors for case study
413 1 and case study 2 were 1.71% and 2.3%. At 1% noise, they were 2.03% and 2.33%,
414  while at 2% noise, they increased to 2.55% and 3.52%, respectively. Although noise
415  impacted the inversion accuracy, the framework maintained high performance, with the
416  average relative errors for both case studies remaining below 5% (Fig. 9). These results
417  confirm the strong robustness and stability of the proposed inversion framework.

418 6 Discussion

419 6.1 Analysis of surrogate models

420  In the current research on GCI, it is common to use machine learning methods to
421  construct surrogate models for groundwater simulation. Various methods are employed,
422  such as long short-term memory neural networks (Li et al., 2021), light gradient
423 boosting machines (Pan et al., 2023), and deep residual networks (Xu et al., 2024b),
424 each with its own advantages. This study focuses on adaptable methods. Compared to
425  the methods mentioned above, the BPNN surrogate model developed in this paper
426  features a simple structure, high flexibility, and broad adaptability. It performs well in
427  different scenarios, including the PSC and ASC cases analyzed in this paper, where the
428  R?values are 0.9994 and 0.9989 and the MRE values are 3.7% and 4.48%, respectively.
429  These results demonstrate the model’s excellent ability to fit the input-output
430  relationship of the simulation model. The effectiveness of a surrogate model lies not
431  only in its complexity but also in how well it fits the problem at hand. A good surrogate
432  model should maintain both high accuracy and strong adaptability. In this paper, the
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433  ASCis drawn from Pan et al. (2022a), which had been widely validated in other studies.
434  For example, Li et al. (2023) used the same case to validate an inversion method,
435  applying a multilayer perceptron model to the simulation, achieving an R? of 0.9999
436 and an MRE of 2.85%. Similarly, Xu et al. (2024a) employed automatic machine
437  learning methods for surrogate model construction, achieving an R? of 0.9754 and an
438  MRE of 4.154%. Compared to the surrogate models developed by these researchers,
439  the BPNN model constructed in this study also demonstrates excellent approximation
440  accuracy, further validating the advantages of the proposed method.

441 6.2 Analysis of optimization algorithms

442  This paper compares the AHA with PSO and SSA under the same preconditions and
443  finds that AHA offers clear advantages in both convergence speed and global
444  optimization capability. Based on these results, AHA was chosen to solve the
445  optimization model, and its adaptability was further verified in two different cases. In
446  the field of optimization algorithms, the "no free lunch principle" (Zhao et al., 2022b)
447  emphasizes that no single algorithm performs well across all optimization problems.
448  When addressing real-world problems, it is essential to understand the nature of the
449  problem thoroughly before selecting the appropriate optimization algorithm. This
450  principle encourages researchers to develop new and more effective algorithms from
451  different perspectives, providing more options for optimization problem researchers.
452  This insight also applies to groundwater pollution traceability. Given the diverse nature
453  of pollution traceability problems, it is challenging for any single optimization
454 algorithm to be universally applicable. As research deepens, these problems tend to
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455  become more high-dimensional and nonlinear, necessitating the exploration of
456  algorithms with stronger global optimization capabilities and higher search efficiency.
457  Additionally, it is important to consider alternative uses of optimization methods. One
458  promising approach involves using optimization techniques to improve machine
459  learning models by identifying optimal parameters (hyperparameters) during training,
460  which can significantly enhance model accuracy (Jia et al., 2024).

461 6.3 Inversion analysis

462  Previous studies related to GCI employed a variety of methods to conduct either single
463  or simultaneous inversion characterization of pollution sources and to identify
464  hydrogeological parameters of the model. Li et al. (2022) identified the number,
465  location, and release history of pollution sources, while Li et al. (2008) focused on
466  determining the hydraulic conductivities of a study site. Bai et al. (2022) utilized
467  inversion techniques to simultaneously characterize pollution sources and identify the
468  hydraulic conductivities within their simulation models. While some studies have
469  applied inversion to the boundary conditions of the simulation model (Jiao et al., 2019),
470  fewer studies have simultaneously characterized pollution sources and identified both
471 hydrogeological parameters and boundary conditions of the model. Source information,
472 model hydrogeological parameters, and boundary conditions are all critical components
473 of groundwater contamination simulation models. Inaccuracies in any of these
474  components can affect the overall results of inversion, making it essential to identify all
475  components simultaneously. Therefore, in the PSC case of this study, the release history
476  of the pollutant source, the hydraulic conductivity of the model, and the specific head
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477  boundary values were simultaneously identified. This simultaneous identification of
478  multiple key parameters enhances the reliability and effectiveness of decision support
479  systems.

480 The overall inversion framework in this paper combines BPNN and AHA and is
481  validated under different noise scenarios to account for the effect of noise in the
482  observed data. The results indicate that the inversion framework demonstrates high
483  robustness. However, a limitation of this paper is that noise is not addressed, and its
484  presence can contaminate the observed data, further impacting the accuracy of GCI.
485  Noise elimination methods could be applied to the observed data in future studies.
486  Another major limitation is the generalization of the actual groundwater system.
487  Groundwater systems are often complex, necessitating model simplifications through
488  assumptions (e.g., homogeneity, isotropy) that may not reflect the actual geological
489  conditions, thereby affecting model accuracy. To address actual problems, the
490  hydrogeological conditions of the study area should be thoroughly investigated,
491  ensuring the model closely represents the actual situation, reducing error, improving
492  model accuracy, and ultimately enhancing inversion accuracy.

493 7 Conclusions

494  In this study, a BPNN-AHA inversion framework was developed to accurately and
495  synergistically identify groundwater point and areal sources of contamination and
496  combined hydrogeologic parameters. Among them, the BPNN surrogate model can
497  well replace the simulation model, and the AHA had good global optimization
498  capability and excellent solution accuracy. The robustness of the proposed methodology
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499  was verified by applying the inversion framework to scenarios with different noise
500 levels. The conclusions of the present study are listed below:

501 (1) The construction of a surrogate model to the simulation model satisfied the fitting
502  accuracy requirement while also significantly reducing the computational time. The
503  current study established BPNN and kriging surrogate models, with a comparison of
504  the outputs of the models illustrating that the former obtained a higher fitting accuracy,
505 leading to its application in the inversion framework.

506  (2) The present study applied AHA within the model optimization, with the results
507  compared to those of PSO and SSA optimization. Compared to PSO and SSA, AHA
508  rapidly reached convergence and identified the global optimum, thereby significantly
509  improving the accuracy and efficiency of inversion.

510  (3) The proposed inversion framework can realize the synergistic identification of PSC
511 and ASC combined with hydrogeological parameters, which can ensure high
512  identification accuracy, and the inversion framework has strong robustness under
513  different noise levels. While individual identification simplifies the problem but may
514  ignore correlations between parameters, synergistic identification improves the
515  accuracy and consistency of identification by synchronizing the estimation of pollution
516  sources and hydrogeological parameters. However, noise and parameter estimation
517  uncertainties may still affect the reliability of the inversion results. Therefore,
518  uncertainty analysis needs to be further considered in subsequent studies. Overall, the
519 BPNN-AHA inversion framework has excellent inversion performance and strong
520  practicability, which can provide a reliable basis for groundwater pollution remediation
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521  and management.
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672  Figure captions

673  Figure 1: General process used in the present study to construct the machine learning
674  surrogate model-artificial hummingbird algorithm framework.

675  Figure 2: Structure of a back-propagation neural network (BPNN).

676  Figure 3: Schematic diagram of case study 1.

677  Figure 4: Distributions of concentrations of groundwater pollutants over different
678  periods: (a)—(j) represent 1-10 years.

679  Figure 5: Schematic diagram of case study 2.

680  Figure 6: Distributions of concentrations of groundwater pollutants over different
681  periods: (a) 1 year; (b) 2 years; (c) 3 years; (d) 4 years; (e) 5 years.

682  Figure 7: Convergence curves of the sparrow search algorithm (SSA), particle swarm
683  optimization (PSO), and artificial hummingbird algorithm (AHA) applied to case study.
684  (a) case studyl; (b) case study2.

685  Figure 8: Comparison between the true values and optimal values for the sparrow
686  search algorithm (SSA) and artificial hummingbird algorithm (AHA).

687  Figure 9: Comparison of relative errors for case studies 1 and 2 under different noise
688  levels.
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712

713

Table 1 Fundamental values and ranges of aquifer parameters.

Parameter

Value or range

Hydraulic conductivity of zone 1, K; (m/d)
Hydraulic conductivity of zone 2, K> (m/d)
Hydraulic conductivity of zone 3, K3 (m/d)
Specific yield of zone 1, u;

Specific yield of zone 2, x>

Specific yield of zone 3, u3

Longitudinal dispersity of zone 1 (m)
Longitudinal dispersity of zone 2 (m)
Longitudinal dispersity of zone 3 (m)

Grid spacing in X and Y direction (m)
Recharge rate (m/d)

Initial concentration (mg/L)

Length of the stress period (y)

Aquifer thickness(m)

Groundwater level at the western boundary, H; (m)

Groundwater level at the eastern boundary, H>(m)

(50,70)
(35.55)
(40,60)
0.27
0.22
0.25
40

30

35

50
0.00042
50

10

10
(18,20)
(15,17)
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714 Table 2 Ranges of values of pollution sources.
Pollution Release intensity (g/dx10)
sources Tl T2 T3 T4 TS T6-T10
Sl (0,86.4)  (0,69.12) (0,60.48) (0,51.84) (0,43.2) 0
S2  (0,103.68) (0,86.4) (0,77.76) (0,69.12) (0,51.84) 0
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716 Table 3 True values of the variables to be identified.
Variables to be identified True value
Ki (m/d) 60.37
K> (m/d) 42.84
K3 (m/d) 50.17
Hi (m) 19.09
H, (m) 16.11
SiT: (g/d=10) 34.25
ST (g/dx10) 57.07
8175 (g/dx10) 57.99
S1 T4 (g/dx10) 31.76
) Ts (g/dx10) 18.14
S, (g/dx10) 82.07
$,T> (g/dx10) 22.18
S, (g/dx10) 74.35
S, T4 (g/dx10) 49.24
8> 75 (g/dx10) 15.84

717
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718 Table 4 Fundamental values and ranges of aquifer parameters and pollution
719 sources.
Parameter Value or range
Specific yield 0.24
Transverse dispersity (m) 9.8
Longitudinal dispersity (m) 40
Aquifer thickness(m) 40
Grid spacing in x-direction(m) 20
Grid spacing in y-direction(m) 20
Number of stress periods 5
Hydraulic conductivity(m/d) (30,50)

Fluxes of contamination source during
. (0,52)
stress period(g/d)

720
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721 Table 5 True values of the variables to be identified.
Variables to be identified  True value
K (m/d) 45.93
K> (m/d) 46.54
K3 (m/d) 32.11
Ky (m/d) 4423
Si1T1 (g/d) 38.05
ST (g/d) 32.24
S175(g/d) 24.96
S1T4(g/d) 5.17
8175 (g/d) 25.42
ST (g/d) 31.15
ST (g/d) 39.94
ST (g/d) 51.5
ST (g/d) 49.47
S$x T (g/d) 31.53
83T (g/d) 27.49
S3T> (g/d) 26.93
SsTs (g/d) 5.95
8374 (g/d) 30.5
83T (g/d) 23.7
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EGUsphere\

723 Table 6 A comparison of the accuracies of the assessed surrogate models.
Case Surrogate model ~ R? MRE RMSE
Casel Kriging 0.9942 13.43% 11.8262
BPNN 0.9994 3.70% 3.6526
Cased Kriging 0.9837 9.98%  37.7547
BPNN 0.9989 4.48% 9.8488

724
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Table 7 A comparison of inversion values under different noise levels for case

study 1.

Unknown True Inversion values under different noise levels

variables  value 0 0.5% 1% 2% Relative error

K 60.37 5891 5946 61.16 61.15 242% 1.50% 131% 1.29%
K 42.84 4212 41.73 41.72 42.18 1.67% 2.58% 2.61% 1.54%
K 50.17 49.28 48.52 4858 50.01 1.78% 3.29% 3.17% 0.31%
H 19.09 19.10 19.04 19.06 19.27 0.06% 0.24% 0.18% 0.96%
H, 16.11 16.05 1597 16.01 1627 0.40% 0.87% 0.64% 0.97%
SiTh 3425 34.65 3482 3537 3650 1.16% 1.66% 3.26% 6.57%
NVE 57.07 5720 5735 57.66 58.79 0.24% 0.49% 1.04% 3.01%
NVA] 5.80 5.48 559 564 556 549% 3.63% 2.78% 4.19%
1Ty 31.76 31.80 31.84 3199 32.71 0.15% 0.25% 0.74% 3.00%
S$17Ts 18.14 18.21 18.24 18.31 18.63 0.39% 0.55% 0.96% 2.73%
ST 82.07 81.45 81.67 8248 84.62 0.76% 0.50% 0.49% 3.10%
ST 22.18 21.02 2099 21.10 21.86 5.22% 5.37% 4.87% 1.44%
S T3 7435 75.69 7595 76.44 77.69 1.80% 2.15% 2.81% 4.49%
S$2T4 492 486 485 474 484 137% 148% 3.76% 1.78%
ST 15.84 1595 16.00 16.12 1629 0.73% 1.06% 1.81% 2.86%
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Table 8 A comparison of inversion values under different noise levels for case

study 2.

Unknow e Inversion values under different noise levels

i/lariab les value 0 0.5% 1% 2% Relative error

K 4593 4494 4544 4507 4601 2.15% 1.07% 1.87% 0.17%
K> 46.54 46.68 4728 46.83 4792 0.29% 1.59% 0.62% 2.97%
K3 32.11  32.08 3191 32.05 31.73 0.08% 0.62% 0.20% 1.19%
K4 4423 4456 43.79 4435 4295 0.75% 0.98% 0.26% 2.89%
SiTh 38.05 3748 3759 3785 38.14 148% 1.22% 0.51% 0.23%
S1T» 3224 3284 3255 33.10 3242 1.84% 095% 2.65% 0.55%
NV 2496 26.75 2646 26.89 2648 7.18% 6.01% 7.74% 6.09%
S174 5.17 489 485 493 477 544% 633% 4.79% 7.82%
S1Ts 2542 2648 2629 26.69 2642 4.18% 3.43% 5.03% 3.94%
ST 31.15 31.17 31.21 3138 3148 0.08% 0.19% 0.74% 1.07%
S$2Ts 39.94 40.17 40.12 40.65 40.58 0.57% 0.43% 1.76% 1.59%
S T3 51.5 51.77 51.74 52.00 52.00 0.53% 047% 0.97% 0.97%
S$2T4 4947 4891 4881 49.51 4936 1.13% 1.33% 0.09% 0.21%
S$2Ts 31.53  33.54 3330 33.41 33.03 6.38% 5.61% 597% 4.75%
S3Th 2749 27.61 28.03 28.01 28.75 0.43% 196% 1.90% 4.59%
S$3T» 26.93 2733 27.88 27.68 28.80 1.47% 3.52% 2.76% 6.95%
NYE 5.95 597 6.14 6.11 638 027% 3.15% 2.66% 7.13%
S$3T4 30.5 3097 31.18 31.16 31.70 1.54% 221% 2.16% 3.92%
NYE 23.7 23.05 2432 24.06 26.06 2.77% 2.59% 1.49% 9.95%
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731 Table 9 Mean relative errors of the two case studies under different noise levels.

Different noise levels

0 0.5% 1% 2%
casel 1.58% 1.71% 2.03% 2.55%
case2 2.03% 2.30% 2.33% 3.52%

case

732

733
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