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Highlights 24 

A highly adaptable inversion framework is adapted to different groundwater pollution 25 

scenarios. 26 

Synergetic identification of source information, hydraulic conductivity and boundary 27 

condition in PSC. 28 

The artificial hummingbird algorithm is applied to solve the optimized model.29 
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Abstract 30 

Effectively remediating groundwater contamination relies on the precise determination 31 

of its sources. In recent years, a growing research focus has been placed on concurrently 32 

estimating hydrogeological characteristics and locating pollutant origins. However, the 33 

identification of precise synergistic identification of point and areal contamination 34 

sources of groundwater and combined hydrogeological parameters has not been 35 

effectively solved. This study developed an inversion framework that integrates 36 

machine learning surrogates with the artificial hummingbird algorithm (AHA). The 37 

surrogate models approximating the simulation system were constructed using both 38 

backpropagation neural networks (BPNN) and Kriging techniques. The AHA was then 39 

employed to solve the optimized model, and its performance was benchmarked against 40 

particle swarm optimization (PSO) and the sparrow search algorithm (SSA). The 41 

applicability of this inversion framework was assessed by application to point sources 42 

of contamination (PSC) and areal source contamination (ASC). The robustness of the 43 

framework was verified through application to scenarios with different noise levels. 44 

The results showed that surrogate model constructed by the BPNN method provided 45 

estimates that were closer to those of the simulation model in comparison to the kriging 46 

method, coefficient of determination (R2) is 0.9994 and mean relative error (MRE) is 47 

3.70% in PSC, and R2 is 0.9989 and MRE is 4.48% in ASC. The performance of the 48 

AHA exceeded those of the PSO and the SSA. In PSC, MRE of the identification result 49 

is 1.58%; In ASC, MRE of the identification result is 2.03%, with the AHA able to 50 

rapidly and accurately identify the global optimum and improve the inversion efficiency. 51 
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The proposed inversion framework was demonstrated to apply to both groundwater 52 

PSC and ASC problems with strong robustness, providing a reliable basis for 53 

groundwater pollution remediation and management. 54 

Keywords: Groundwater contamination identification; Synergistic identification; Point 55 

and areal sources contamination; Surrogate model; Artificial hummingbird algorithm  56 
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1 Introduction 57 

Groundwater pollution adversely affects human production and life (Wang et al., 2022; 58 

Liu et al., 2024). The remediation of groundwater contamination is important for 59 

ensuring human health and socioeconomic development. However, groundwater 60 

contamination is difficult to detect and treat due to its hidden nature, thereby 61 

complicating the assessment of groundwater pollution risk and contamination liability 62 

(Li et al., 2021). Remediation requires the identification of sources of groundwater 63 

contamination (location, number, release history, etc.) and hydrogeological conditions 64 

(Daranond et al., 2020; Pan et al., 2022b). However, directly obtaining this information 65 

can pose a challenge, with a proven method being the identification of groundwater 66 

contamination by inversion of limited observational data. 67 

Inversion of groundwater aquifer hydrogeologic parameters and pollution source 68 

information is a widely studied topic. In past studies on groundwater contamination 69 

identification (GCI), many researchers have focused on the separate identification of 70 

hydrogeological parameters or pollution source information. For example, Singh and 71 

Datta (2007) utilized backpropagation-based artificial neural network techniques 72 

specifically for the identification of groundwater pollution sources. Similarly, Mahar 73 

and Datta (2000) employed a nonlinear optimization model to identify the location, 74 

duration, and magnitude of the contamination source. Liu et al. (2022) inverted 75 

hydrogeological parameters through a simulation-optimization approach, while Wang 76 

et al. (2024a) combined three different inversion algorithms and a kriging surrogate 77 

model to invert hydraulic conductivity. While simplifying the problem, these methods 78 
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allow researchers to focus on specific aspects. However, although the individual 79 

identification method can be effective in some cases, it often overlooks the 80 

interconnectivity between hydrogeological parameters and pollution sources. 81 

Currently, the simultaneous identification of hydrogeological parameters and 82 

pollution source information is gaining increasing attention in research. Researchers 83 

have employed various advanced technologies to achieve this goal. Wang et al. (2021) 84 

utilized a parallelized heuristic algorithm to concurrently determine both aquifer 85 

characteristics and the groundwater pollution sources. Pan et al. (2021) integrated a 86 

Bayesian-regularized deep neural network surrogate to jointly infer pollution source 87 

details and hydraulic conductivity. Hou et al. (2021) integrated homotopy-based inverse 88 

optimization theory with a multi-kernel extreme learning machine to finish the co-89 

identification of contamination sources and aquifer parameters. Luo et al. (2023) 90 

leveraged machine learning techniques to establish an inverse relationship between 91 

model outputs and inputs, enabling fast and simultaneous retrieval of pollution source 92 

attributes and hydrogeological properties. Although these methods have advanced the 93 

field, improving recognition accuracy remains a major challenge in the simultaneous 94 

identification process. 95 

The simulation-optimization method has been widely applied in GCI research 96 

because of its robust mathematical foundation (Mirghani et al., 2009) and its ability to 97 

identify multiple variables simultaneously. To enhance both identification accuracy and 98 

efficiency using simulation-optimization, two key approaches are employed: one is to 99 

optimize the model solution method for better performance, and the other is to construct 100 
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a surrogate model with high approximation accuracy. Optimizing the model solution 101 

method is essential. Since heuristic optimization algorithms are more capable of 102 

identifying global optima, many have been applied to GCI. Mirghani et al. (2012) 103 

implemented a genetic algorithm within optimization to identify sources of 104 

contamination. Jiang et al. (2013) combined a harmony search algorithm with a 105 

contamination transport simulation model to characterize contamination sources. 106 

Additional methods, such as simulated annealing (Rao, 2006; Yeh et al., 2007; Jha and 107 

Datta, 2013) and sparrow search algorithms (SSA) (Pan et al., 2022b), have also been 108 

applied to GCI. However, increasing dimensionality and complexity in GCI problems 109 

make it difficult for many optimization algorithms to efficiently search for global 110 

optima. Constructing high-accuracy surrogate models is another crucial strategy. 111 

Surrogate models can significantly reduce computation time and improve inversion 112 

efficiency. Among these models, the widely used kriging (Chugh et al., 2018; Zhang et 113 

al., 2019; Jiang et al., 2020) and backpropagation neural network (BPNN) (Sargolzaei 114 

et al., 2012; Zhang et al., 2021; Wang et al., 2024b) methods offer high flexibility and 115 

strong nonlinear fitting capabilities. Despite these advances, previous studies have 116 

overly focused on point source contamination (PSC) or areal source contamination 117 

(ASC) scenarios in isolation. However, the identification of precise synergistic 118 

identification of PSC and ASC of groundwater and combined hydrogeological 119 

parameters has not been effectively solved. 120 

Based on the above problems, this paper proposes an inversion framework 121 

integrating a machine learning surrogate model with the artificial hummingbird 122 
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algorithm (AHA) using the simulation-optimization method (Fig. 1). Both BPNN and 123 

kriging were utilized to develop surrogate models for the simulation model. AHA was 124 

introduced to solve the optimization model, with its solution results compared against 125 

those of PSO and SSA. The applicability of this inversion framework was evaluated 126 

through its application to both PSC and ASC scenarios. The objectives of this study 127 

were: (1) To assess the performance of the surrogate models constructed by BPNN and 128 

kriging, and to identify the model with better practicality and adaptability to replace the 129 

simulation model; (2) To examine the advantages of AHA for solving the optimization 130 

model by comparing it with other optimization algorithms under the same conditions, 131 

and to further enhance the model’s solving accuracy; (3) To apply the simulation-132 

optimization-based inversion framework to complete the inversion tasks for PSC and 133 

ASC scenarios and validate the framework’s effectiveness, while also evaluating its 134 

robustness through tests under different noise conditions. 135 

2. Methodology 136 

2.1. Simulation model 137 

In this study, the numerical groundwater simulation framework comprised both a flow 138 

component and a solute transport module. The fundamental two-dimensional (2D) 139 

partial differential equation governing groundwater flow is formulated as follows: 140 

( ( ) )  ( , )  , 1,2 0ij

i j

H H
K H z W x y S i j t

x x t


  
− + =   

  
    (1) 141 

where Kij is hydraulic conductivity, W is the volumetric flux per unit volume, μ is the 142 

specific yield, H is the water level elevation, z is the elevation of the aquifer floor, and 143 

S is the boundary of the spatial domain.  144 
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( ) ( )ij i

i j i e
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D u C
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= − +
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       (2) 145 

ij

i

e i

K H
u

n x


=


         (3) 146 

where C denotes the contaminant concentration in groundwater, t is the temporal 147 

variable, ui indicates the average flow velocity, R accounts for source and sink 148 

contributions, Dij refers to the hydrodynamic dispersion tensor, and ne represents the 149 

effective porosity of the medium. To obtain numerical solutions for the groundwater 150 

flow and solute transport equations, the MODFLOW and MT3DMS packages were 151 

employed (Asher et al., 2015). 152 

2.2. Kriging method 153 

Kriging was employed to develop the underlying framework of the approach by 154 

capturing both the correlation and stochastic variability of variables within a confined 155 

spatial domain, thereby enabling the estimation of optimal regional values. The 156 

association between input and output variables is described through a regression-based 157 

expression as shown below (Zhao et al., 2022a): 158 

1

1

( ) ( ) ( )
k

i i

i

y x f x z x
=

= +        (4) 159 

where 𝑦̂(𝑥)  is the estimated value of pollutant concentration 𝑦(𝑥) , 𝑓𝑖(𝑥)(𝑖 =160 

1, ⋯ , 𝑘) is the basis function of the known regression model, and 𝑧(𝑥) is the random 161 

part. 162 

The following equations were satisfied: 163 

( )

( ) 2

2

( ) 0

( )

cov ( ), ( ) ( , )i j i j

E z x

D z x

z x z x R x x





 =


=


  =  

      (5) 164 
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where 𝑅(𝑥𝑖, 𝑥𝑗)  is the correlation function between the sampled point 𝑥𝑖  and 𝑥𝑗 . 165 

(𝑖 = 1,2, ⋯ , 𝑚; 𝑗 = 1,2, ⋯ , 𝑚) 166 

The Gaussian model is commonly used: 167 

2

1

( , ) exp
i j

m

i j k k k

k

R x x x x
=

 
= − −  

 
       (6) 168 

where 𝜃𝑘 is a coefficient to be determined, which can be obtained by calculation. 169 

2.3. The BPNN method 170 

A typical back-propagation neural network (BPNN) is composed of three 171 

fundamental components (Fig. 2): (1) an input layer, (2) the hidden layers, and (3) an 172 

output layer. The computation process proceeds in two main phases: forward 173 

propagation and backward propagation (Chen et al., 2010; Zhang et al., 2018). 174 

1) During forward propagation, data are introduced into the network via the input 175 

layer, and subsequently processed through successive layers to yield the final output. 176 

BPNNs frequently employ a nonlinear sigmoid activation function: 177 

1
( )

1 x
f x

e−
=

+
   (7) 178 

The calculation of the forward transmission output layer is: 179 

1

j ij i

i

I w o b
=

= +     
1

( )
1 j

j j I
o f I

e
= =

+
     (8) 180 

where Oi represents the output of neuron i, Oj is the output of neuron j, b is the bias 181 

term, and Wij is the weight of the connection between neuron i and neuron j. 182 

2) Backward propagation involves the random assignment of the weight of the first 183 

positive feedback process within the output layer. The adjustment of the parameters of 184 

the entire network is required. Network adjustment is performed by minimizing the 185 

discrepancy between the predicted output and the target category in the output layer. 186 
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Specifically, for the output layer: 187 

(1 )( )j j j j jE O O T O= − −    (9) 188 

where Ej represents the error value at the jth node and Tj denotes the corresponding 189 

output. The hidden layer's output is determined by summing the weighted contributions 190 

from the errors of the lower nodes: 191 

(1 )j j j k jkk
E O O E W= −     (10) 192 

where Ek is the error gradient for the subsequent node k and Wjk is the weight connecting 193 

node j to t node k. Following error calculation, the weight is adjusted according to the 194 

error gradient: 195 

 '

ij j i

ij ij ij

W E O

W W W

 =

= + 
 (11） 196 

where η is the learning rate. 197 

2.4 Artificial Hummingbird Algorithm (AHA) 198 

The AHA consists of three main elements: food sources, hummingbirds, and the visit 199 

table. Hummingbirds typically assess food sources based on factors such as nectar 200 

quality, individual flower nectar content, and replenishment rates. For simplicity, it can 201 

be assumed that all food sources share the same flower type and number. 202 

Hummingbirds within a population can exchange information, be assigned to specific 203 

food sources, track nectar replenishment rates, and record the duration each food source 204 

remains unvisited. The visit table records the time since a hummingbird last visited a 205 

food source, and is used to assign visit levels; hummingbirds can harvest more nectar 206 

by first accessing food sources with higher access levels, following which food sources 207 

with the highest nectar replenishment rate are chosen (Zhao et al., 2022b). The AHA is 208 
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algorithmically described below. 209 

(1) Initialization 210 

Firstly, n hummingbirds are randomly placed on n food sources: 211 

( ) 1, ,ix Low r Up Low i n= +  − =      (12) 212 

The access table for the food source is then initialized: 213 

,

0          
  1, , ;  1, ,

null      
i j

if i j
VT i n j n

i j


= = =

=
   (13) 214 

where Low and Up are the lower and upper boundaries for a d-dimensional problem 215 

respectively, r represents a random vector of [0,1], and xi is the position of the ith food 216 

source. For 𝑖 = 𝑗, 𝑉𝑇𝑖,𝑗 = 𝑛𝑢𝑙𝑙 indicates the sourcing of food from a specific source. 217 

For 𝑖 ≠ 𝑗, 𝑉𝑇𝑖,𝑗 = 0 indicates that the ith hummingbird has just visited the jth food 218 

source in the current iteration. 219 

(2) Guided foraging 220 

Hummingbirds identify food sources in two steps: (1) identifying the food source 221 

with the highest access level; (2) selecting the food source with the highest nectar 222 

replenishment rate. After identifying the target food source, the hummingbird can fly to 223 

the target source to feed. During foraging, direction switching vectors used to control 224 

the availability of one or more directions in the D-dimensional space are introduced to 225 

model three flight skills: omnidirectional, diagonal, and axial flight. These flight 226 

models can be extended to the d-D space, and the mathematical model of axial flight is: 227 
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( )
1          ([1, ])

  1, ,
0       

i
if i randi d

D i d
else

=
= =


    (14) 228 

Diagonal flight is defined as: 229 

( )

1

1      ( ), [1, , ]

    ( ), [2,[ ( 2)] 1]   1, ,

0  

i

if i P j j k

D P randperm k k r d i d

else

= 


= =   − + =



  (15) 230 

Omnidirectional flight is defined as: 231 

 
( ) 1     1, ,iD i d= =  (16) 232 

where 𝑟𝑎𝑛𝑑𝑖([1, 𝑑])  is a randomly generated integer from 1 to d, 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(𝑘) 233 

creates a random permutation of integers from 1 to k, and r1 is a random number in the 234 

range of 0 to 1. 235 

Hummingbirds can access and obtain target food sources through these flight abilities. 236 

New food sources identified during the search are recorded along with previously 237 

identified food sources. The guided foraging behavior and candidate food sources can 238 

be represented as: 239 

, ,( 1) ( ) ( ( ) ( ))i i tar i i tarv t x t a D x t x t+ = +   −      (17) 240 

~ (0,1)a N          (18) 241 

where 𝑥𝑖,𝑡𝑎𝑟(𝑡) is the location of the food source that the ith hummingbird plans to 242 

visit, 𝑥𝑖(𝑡) represents the location of the ith food source at time t, and a is a leading 243 

factor obeying a normal distribution.  244 

The location of the ith food source is updated as: 245 
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( )      ( ( )) ( ( 1))
( 1)

( 1)       ( ( )) ( ( 1)) 

i i i

i

i i i

x t f x t f v t
x t

v t f x t f v t

 +
+ = 

+  +
   (19) 246 

where 𝑓(∙) represents the function fitness value. The formula for updating the location 247 

can contribute to the preferential selection of food sources with a high nectar supply 248 

rate. 249 

(3) Territorial foraging 250 

Since the quality of food sources within a foraging area may vary, hummingbirds 251 

actively search within that area. The regional foraging strategies and candidate food 252 

sources of hummingbirds can be represented as: 253 

( 1) ( ) ( )i i iv t x t b D x t+ = +         (20) 254 

~ (0,1)b N         (21) 255 

where b is a territorial factor obeying a normal distribution. Eq. (20) allows different 256 

hummingbirds to use their specific flight skills to identify new food sources near the 257 

target source.  258 

(4) Migration foraging 259 

Migration coefficients are defined in the AHA algorithm to prevent the generation of 260 

local optimums. The exceedance of the number of iterations of the set migration 261 

coefficient results in the hummingbird located in the worst food source repeating a 262 

search for a new food source across the entire search range and the subsequent updating 263 

of the visit table. 264 
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( 1) ( )warx t Low r Up Low+ = +  −      (22) 265 

where 𝑥𝑤𝑜𝑟  is the food source with the worst nectar supply rate. The migration 266 

coefficient relative to population size can be defined as. 267 

2M n=          (23) 268 

3. Case studies 269 

The present study designed a groundwater PSC case study and an ASC case study to 270 

verify the applicability of the proposed GCI framework. Since the present study 271 

established two hypothetical examples, a set of variables to be identified and 272 

background variables for input into the groundwater contamination simulation model 273 

were established for each example for forward computation. The pollutant 274 

concentrations monitored at wells were used as observed data. The robustness of the 275 

inversion framework was verified by adding random noise to the observed data, 276 

expressed as: 277 

1 (1 rand),  0.5%,1% and 2%l l = +  =     (24) 278 

where 𝛼  represents the observation data, 𝛼 1 indicates observation data with added 279 

noise, l is the max disturbance range, and rand is a random number between −1 and 1. 280 

3.1 Case study 1: groundwater PSC 281 

The study area is 2,500 m and 1,400 m from east to west and north to south, respectively, 282 

with topography decreasing from west to east and groundwater flow from northwest to 283 

southeast. The study area contains an inhomogeneous isotropic aquifer, and the present 284 

study focused on a layer of diving aquifer with a thickness of 10 m (Table 1). 285 
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Groundwater flow was represented as 2D steady flow, and the study area was divided 286 

into three areas according to differences in hydraulic conductivities. Since the northern 287 

and southern parts of the study area are very weakly permeable formations, they were 288 

generalized in the present study as no-flow boundaries. Rivers formed the boundaries 289 

of the western and eastern parts, and were generalized as specific head boundaries (Fig. 290 

3). 291 

In this case study, the variables to be identified fell into three main categories: (1) 292 

head values at the specific head boundaries. including H1 and H2; (2) hydraulic 293 

conductivities for each part of the study area, including K1, K2, and K3; (3) the intensities 294 

of the release of pollutants from the two sources during the release periods: S = SaTb; a 295 

= 1, 2; and b = 1, 2, 3, 4, 5 (Table 3). SaTb represents the intensity of pollution source a 296 

during the bth stress period; this case study had a study period of 10 years (Table 1, Fig. 297 

4), with both sources only releasing pollutants in the first five years (Table 2). Five 298 

wells were established to monitor the concentrations of groundwater contaminants once 299 

a year. The study area was spatially discretized into 50 m × 50 m grids (Table 1).  300 

3.2 Case study 2: groundwater ASC 301 

The present study selected the hypothetical case study used by Pan et al. (2022a) as a 302 

case study. The site has an area of 5 km2, with a length of 2.5 km and width of 2 km 303 

from east to west and south to north, respectively. Groundwater flows from northwest 304 

to southeast. The study area was conceptualized as an inhomogeneous isotropic aquifer 305 

and the current study focused on a diving aquifer, in which flow was represented as 2D 306 

steady flow. The study area’s aquifers were categorized into four zones based on 307 
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hydraulic conductivity, labeled K1 to K4. The western and eastern river boundaries were 308 

modeled as specified head boundaries, while the northern and southern regions, 309 

characterized by low permeability granite, were treated as no-flow boundaries (Fig. 5, 310 

Table 4). 311 

Within this case study, the variables to be identified fell into two categories: (1) 312 

hydraulic conductivities of each part of the study area, including K1 to K4; (2) the 313 

intensities of pollutants released by three areal sources of contamination: S = SaTb; a = 314 

1, 2, 3; and b = 1, 2, 3, 4, 5 (Table 5). SaTb indicates the intensity of pollution source a 315 

during the bth stress period. A total of nine monitoring wells were established to monitor 316 

the concentrations of groundwater contaminants once a year (Fig. 6). The study area 317 

was spatially discretized as 20 m × 20 m grids (Table 4). 318 

4. Model construction 319 

4.1 Establishment of surrogate models 320 

The present study established two case studies: the PSC and the ASC. The variables to 321 

be identified for the PSC case study included three categories with 15 dimensions, 322 

whereas those to be identified for the ASC case study included two categories with 19 323 

dimensions. The present study used the Latin hypercube method to sample within the 324 

feasible domain of the variables to be identified. This sampling process was 325 

implemented in MATLAB. Sample groups for the PSC and ASC case studies totaled 326 

390 and 490, respectively, and the input sample dataset was generated by random 327 

combination. 328 

The parameters obtained from the above sampling were input into the groundwater 329 
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simulation model. The simulation model was then run to obtain the pollutant 330 

concentrations at the 390 and 490 monitoring groups in the PSC and ASC case studies, 331 

respectively. These simulated pollutant concentrations were used as the output sample 332 

dataset, and the output sample dataset was combined with the input sample dataset to 333 

form the input-output sample dataset. The kriging and BPNN methods were used to 334 

establish the surrogate models of the simulation model. The first 350 and 440 groups 335 

of the PSC and ASC case input-output sample datasets, respectively, were used as 336 

training samples in each case study to construct surrogate models, while the remaining 337 

40 and 50 groups were used as test samples to evaluate the accuracy of the surrogate 338 

models. 339 

The present study applied the coefficient of determination (R2), the mean relative 340 

error (MRE), and the root mean square error (RMSE) to assess the accuracy of the fit 341 

of the estimations of the surrogate models to the output of the simulation model. 342 

1) R2: The closer R2 to 1, the more accurate the surrogate model is. 343 

2

2 1
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1

ˆ( )
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( )

n

i i
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i i
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y y
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−

= −

−
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2) MRE: The average deviation between the outputs of the surrogate model and the 345 

outputs of the simulation model. 346 
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3）RMSE: The value of the RMSE is inversely proportional to the fitting accuracy 348 

of the surrogate model. 349 
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where iy  is the average true value, n is the number of samples, ˆ
iy  is the output of 351 

the surrogate model, yi is the true value of the variable to be identified. 352 

4.2 Establishment of the optimization models 353 

This study employed the CGI through the S-O method, which consists of two main 354 

components: a groundwater contaminant transport simulation model and an 355 

optimization model aimed at minimizing the least squares error between the simulated 356 

and true values. To reduce the computational burden caused by repeated simulation 357 

calls, a surrogate model was used in place of the simulation model. While the same 358 

objective function was applied in both case studies, there were minor variations in the 359 

decision variables and constraints. The decision variables chosen for case study 1 360 

included the boundary head values, the hydraulic conductivities of the site, and the 361 

release history of the contaminant source; those for case study 2 included the hydraulic 362 

conductivities of the site and the release history of the contaminant source. The 363 

constraint conditions were influenced by the decision variables. The optimization was 364 

expressed as: 365 
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where 𝑧 is the objective function, 𝐶𝑚 is the monitored pollutant concentration in the 367 

mth monitoring well, 𝐶̂𝑚  is the simulated pollutant concentration in the mth 368 

monitoring well, 𝐶 is the pollutant concentration, 𝐻 is the head value at the boundary, 369 

𝑠 is the pollution source intensity, 𝑘 represents the hydraulic conductivities of the site, 370 

𝐶𝐿  and 𝐶𝑈  are the upper and lower bound values of pollutant concentration, 371 

respectively, and 𝑠𝑙 and 𝑠𝑢 are the upper and lower bound values of pollution source 372 

intensity, respectively. 373 

The AHA was used to identify the optimal combination of parameters according to 374 

the objective function through multiple iterative calculations, with this parameter set 375 

adopted as the result of inversion. The numbers of hummingbird populations and 376 

iterations were set to 500 and 1,000, respectively. 377 

5. Results 378 

5.1 Surrogate models 379 

The surrogate model for case study 1 using the kriging method achieved an R² of 0.9942, 380 

MRE of 13.43%, and RMSE of 11.8262 (Table 6), while the BPNN method produced 381 

values of 0.9994, 3.70%, and 3.6526, respectively (Table 6). Similarly, for case study 382 

2, the kriging method yielded an R² of 0.9837, MRE of 9.98%, and RMSE of 37.7547, 383 

whereas the BPNN method provided corresponding values of 0.9989, 3.70%, and 384 

3.6526 (Table 6). The BPNN method demonstrated superior goodness-of-fit statistics 385 

compared to the kriging method in both case studies. 386 

While the simulation model required 500 hours for 1,000 iterations, the BPNN 387 

surrogate model completed the same number of iterations in 67 seconds, significantly 388 
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reducing the computation time. 389 

5.2 Optimization algorithms 390 

The BPNN surrogate model was embedded into the optimization model to optimize the 391 

parameter combination according to the objective function. This study employed AHA 392 

within the optimization process and compared its performance against SSA and PSO 393 

under the same population size and number of iterations. In the optimization of case 394 

study 1, PSO failed to converge after reaching the maximum number of iterations, while 395 

AHA and SSA converged after 120 and 350 iterations, respectively (Fig. 7a). For case 396 

study 2, both PSO and SSA failed to converge within the maximum number of iterations, 397 

whereas AHA converged after 150 iterations (Fig. 7b). 398 

Given the results from case study 1, where both AHA and SSA converged, the 399 

subsequent analysis focused on these two algorithms. AHA achieved an optimal search 400 

value closer to the true value and reached the global optimum, while SSA settled at a 401 

local optimum (Fig. 8). These results demonstrate that AHA not only converged faster 402 

than SSA but also identified the global optimum, thereby improving the accuracy and 403 

efficiency of GCI. 404 

5.3 Inversion results and robustness assessment 405 

The BPNN-AHA inversion framework developed in this study was applied to identify 406 

groundwater PSC and ASC and obtain inversion values. To verify the framework’s 407 

robustness and reliability, random noise levels of 0.5%, 1%, and 2% were added to the 408 

observed data. The average relative errors under each noise level were recorded (Table 409 

7, Table 8). The highest inversion accuracy was achieved in the noise-free case for both 410 
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case study 1 and case study 2, with average relative errors of 1.58% and 2.03%, 411 

respectively (Table 9). At a 0.5% noise level, the average relative errors for case study 412 

1 and case study 2 were 1.71% and 2.3%. At 1% noise, they were 2.03% and 2.33%, 413 

while at 2% noise, they increased to 2.55% and 3.52%, respectively. Although noise 414 

impacted the inversion accuracy, the framework maintained high performance, with the 415 

average relative errors for both case studies remaining below 5% (Fig. 9). These results 416 

confirm the strong robustness and stability of the proposed inversion framework. 417 

6 Discussion 418 

6.1 Analysis of surrogate models 419 

In the current research on GCI, it is common to use machine learning methods to 420 

construct surrogate models for groundwater simulation. Various methods are employed, 421 

such as long short-term memory neural networks (Li et al., 2021), light gradient 422 

boosting machines (Pan et al., 2023), and deep residual networks (Xu et al., 2024b), 423 

each with its own advantages. This study focuses on adaptable methods. Compared to 424 

the methods mentioned above, the BPNN surrogate model developed in this paper 425 

features a simple structure, high flexibility, and broad adaptability. It performs well in 426 

different scenarios, including the PSC and ASC cases analyzed in this paper, where the 427 

R² values are 0.9994 and 0.9989 and the MRE values are 3.7% and 4.48%, respectively. 428 

These results demonstrate the model’s excellent ability to fit the input-output 429 

relationship of the simulation model. The effectiveness of a surrogate model lies not 430 

only in its complexity but also in how well it fits the problem at hand. A good surrogate 431 

model should maintain both high accuracy and strong adaptability. In this paper, the 432 
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ASC is drawn from Pan et al. (2022a), which had been widely validated in other studies. 433 

For example, Li et al. (2023) used the same case to validate an inversion method, 434 

applying a multilayer perceptron model to the simulation, achieving an R² of 0.9999 435 

and an MRE of 2.85%. Similarly, Xu et al. (2024a) employed automatic machine 436 

learning methods for surrogate model construction, achieving an R² of 0.9754 and an 437 

MRE of 4.154%. Compared to the surrogate models developed by these researchers, 438 

the BPNN model constructed in this study also demonstrates excellent approximation 439 

accuracy, further validating the advantages of the proposed method. 440 

6.2 Analysis of optimization algorithms 441 

This paper compares the AHA with PSO and SSA under the same preconditions and 442 

finds that AHA offers clear advantages in both convergence speed and global 443 

optimization capability. Based on these results, AHA was chosen to solve the 444 

optimization model, and its adaptability was further verified in two different cases. In 445 

the field of optimization algorithms, the "no free lunch principle" (Zhao et al., 2022b) 446 

emphasizes that no single algorithm performs well across all optimization problems. 447 

When addressing real-world problems, it is essential to understand the nature of the 448 

problem thoroughly before selecting the appropriate optimization algorithm. This 449 

principle encourages researchers to develop new and more effective algorithms from 450 

different perspectives, providing more options for optimization problem researchers. 451 

This insight also applies to groundwater pollution traceability. Given the diverse nature 452 

of pollution traceability problems, it is challenging for any single optimization 453 

algorithm to be universally applicable. As research deepens, these problems tend to 454 
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become more high-dimensional and nonlinear, necessitating the exploration of 455 

algorithms with stronger global optimization capabilities and higher search efficiency. 456 

Additionally, it is important to consider alternative uses of optimization methods. One 457 

promising approach involves using optimization techniques to improve machine 458 

learning models by identifying optimal parameters (hyperparameters) during training, 459 

which can significantly enhance model accuracy (Jia et al., 2024). 460 

6.3 Inversion analysis 461 

Previous studies related to GCI employed a variety of methods to conduct either single 462 

or simultaneous inversion characterization of pollution sources and to identify 463 

hydrogeological parameters of the model. Li et al. (2022) identified the number, 464 

location, and release history of pollution sources, while Li et al. (2008) focused on 465 

determining the hydraulic conductivities of a study site. Bai et al. (2022) utilized 466 

inversion techniques to simultaneously characterize pollution sources and identify the 467 

hydraulic conductivities within their simulation models. While some studies have 468 

applied inversion to the boundary conditions of the simulation model (Jiao et al., 2019), 469 

fewer studies have simultaneously characterized pollution sources and identified both 470 

hydrogeological parameters and boundary conditions of the model. Source information, 471 

model hydrogeological parameters, and boundary conditions are all critical components 472 

of groundwater contamination simulation models. Inaccuracies in any of these 473 

components can affect the overall results of inversion, making it essential to identify all 474 

components simultaneously. Therefore, in the PSC case of this study, the release history 475 

of the pollutant source, the hydraulic conductivity of the model, and the specific head 476 
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boundary values were simultaneously identified. This simultaneous identification of 477 

multiple key parameters enhances the reliability and effectiveness of decision support 478 

systems. 479 

The overall inversion framework in this paper combines BPNN and AHA and is 480 

validated under different noise scenarios to account for the effect of noise in the 481 

observed data. The results indicate that the inversion framework demonstrates high 482 

robustness. However, a limitation of this paper is that noise is not addressed, and its 483 

presence can contaminate the observed data, further impacting the accuracy of GCI. 484 

Noise elimination methods could be applied to the observed data in future studies. 485 

Another major limitation is the generalization of the actual groundwater system. 486 

Groundwater systems are often complex, necessitating model simplifications through 487 

assumptions (e.g., homogeneity, isotropy) that may not reflect the actual geological 488 

conditions, thereby affecting model accuracy. To address actual problems, the 489 

hydrogeological conditions of the study area should be thoroughly investigated, 490 

ensuring the model closely represents the actual situation, reducing error, improving 491 

model accuracy, and ultimately enhancing inversion accuracy. 492 

7 Conclusions 493 

In this study, a BPNN-AHA inversion framework was developed to accurately and 494 

synergistically identify groundwater point and areal sources of contamination and 495 

combined hydrogeologic parameters. Among them, the BPNN surrogate model can 496 

well replace the simulation model, and the AHA had good global optimization 497 

capability and excellent solution accuracy. The robustness of the proposed methodology 498 
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was verified by applying the inversion framework to scenarios with different noise 499 

levels. The conclusions of the present study are listed below: 500 

(1) The construction of a surrogate model to the simulation model satisfied the fitting 501 

accuracy requirement while also significantly reducing the computational time. The 502 

current study established BPNN and kriging surrogate models, with a comparison of 503 

the outputs of the models illustrating that the former obtained a higher fitting accuracy, 504 

leading to its application in the inversion framework. 505 

(2) The present study applied AHA within the model optimization, with the results 506 

compared to those of PSO and SSA optimization. Compared to PSO and SSA, AHA 507 

rapidly reached convergence and identified the global optimum, thereby significantly 508 

improving the accuracy and efficiency of inversion. 509 

(3) The proposed inversion framework can realize the synergistic identification of PSC 510 

and ASC combined with hydrogeological parameters, which can ensure high 511 

identification accuracy, and the inversion framework has strong robustness under 512 

different noise levels. While individual identification simplifies the problem but may 513 

ignore correlations between parameters, synergistic identification improves the 514 

accuracy and consistency of identification by synchronizing the estimation of pollution 515 

sources and hydrogeological parameters. However, noise and parameter estimation 516 

uncertainties may still affect the reliability of the inversion results. Therefore, 517 

uncertainty analysis needs to be further considered in subsequent studies. Overall, the 518 

BPNN-AHA inversion framework has excellent inversion performance and strong 519 

practicability, which can provide a reliable basis for groundwater pollution remediation 520 
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and management.  521 
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Figure captions 672 

Figure 1: General process used in the present study to construct the machine learning 673 

surrogate model-artificial hummingbird algorithm framework. 674 

Figure 2: Structure of a back-propagation neural network (BPNN). 675 

Figure 3: Schematic diagram of case study 1. 676 

Figure 4: Distributions of concentrations of groundwater pollutants over different 677 

periods: (a)–(j) represent 1–10 years. 678 

Figure 5: Schematic diagram of case study 2. 679 

Figure 6: Distributions of concentrations of groundwater pollutants over different 680 

periods: (a) 1 year; (b) 2 years; (c) 3 years; (d) 4 years; (e) 5 years. 681 

Figure 7: Convergence curves of the sparrow search algorithm (SSA), particle swarm 682 

optimization (PSO), and artificial hummingbird algorithm (AHA) applied to case study. 683 

(a) case study1; (b) case study2. 684 

Figure 8: Comparison between the true values and optimal values for the sparrow 685 

search algorithm (SSA) and artificial hummingbird algorithm (AHA). 686 

Figure 9: Comparison of relative errors for case studies 1 and 2 under different noise 687 

levels. 688 
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Figure 3 697 
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Figure 4 699 
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Figure 5 701 
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Figure 6 703 
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Figure 8 709 
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Table 1 Fundamental values and ranges of aquifer parameters. 712 

Parameter Value or range 

Hydraulic conductivity of zone 1, K1 (m/d) (50,70) 

Hydraulic conductivity of zone 2, K2 (m/d) (35,55) 

Hydraulic conductivity of zone 3, K3 (m/d) (40,60) 

Specific yield of zone 1, μ1 0.27 

Specific yield of zone 2, μ2 0.22 

Specific yield of zone 3, μ3 0.25 

Longitudinal dispersity of zone 1 (m) 40 

Longitudinal dispersity of zone 2 (m) 30 

Longitudinal dispersity of zone 3 (m) 35 

Grid spacing in X and Y direction (m） 50 

Recharge rate (m/d) 0.00042 

Initial concentration (mg/L) 50 

Length of the stress period (y) 10 

Aquifer thickness(m) 10 

Groundwater level at the western boundary, H1 (m) (18,20) 

Groundwater level at the eastern boundary, H2(m) (15,17) 
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Table 2 Ranges of values of pollution sources. 714 

Pollution 

sources 

Release intensity (g/d×10) 

T1 T2 T3 T4 T5 T6-T10 

S1 (0,86.4) (0,69.12) (0,60.48) (0,51.84) (0,43.2) 0 

S2 (0,103.68) (0,86.4) (0,77.76) (0,69.12) (0,51.84) 0 
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Table 3 True values of the variables to be identified. 716 

Variables to be identified True value 

K1 (m/d) 60.37 

K2 (m/d) 42.84 

K3 (m/d) 50.17 

H1 (m) 19.09 

H2 (m) 16.11 

S1T1 (g/d×10) 34.25 

S1T2 (g/d×10) 57.07 

S1T3 (g/d×10) 57.99 

S1T4 (g/d×10) 31.76 

S1T5 (g/d×10) 18.14 

S2T1 (g/d×10) 82.07 

S2T2 (g/d×10) 22.18 

S2T3 (g/d×10) 74.35 

S2T4 (g/d×10) 49.24 

S2T5 (g/d×10) 15.84 
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Table 4 Fundamental values and ranges of aquifer parameters and pollution 718 

sources. 719 

Parameter Value or range 

Specific yield 0.24 

Transverse dispersity (m) 9.8 

Longitudinal dispersity (m) 40 

Aquifer thickness(m) 40 

Grid spacing in x-direction(m） 20 

Grid spacing in y-direction(m） 20 

Number of stress periods 5 

Hydraulic conductivity(m/d) (30,50) 

Fluxes of contamination source during 

stress period(g/d) 
(0,52) 
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Table 5 True values of the variables to be identified. 721 

Variables to be identified True value 

K1 (m/d) 45.93 

K2 (m/d) 46.54 

K3 (m/d) 32.11 

K4 (m/d) 44.23 

S1T1 (g/d) 38.05 

S1T2 (g/d) 32.24 

S1T3 (g/d) 24.96 

S1T4 (g/d) 5.17 

S1T5 (g/d) 25.42 

S2T1 (g/d) 31.15 

S2T2 (g/d) 39.94 

S2T3 (g/d) 51.5 

S2T4 (g/d) 49.47 

S2T5 (g/d) 31.53 

S3T1 (g/d) 27.49 

S3T2 (g/d) 26.93 

S3T3 (g/d) 5.95 

S3T4 (g/d) 30.5 

S3T5 (g/d) 23.7 
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Table 6 A comparison of the accuracies of the assessed surrogate models. 723 

Case Surrogate model R2 MRE RMSE 

Case1 
Kriging 0.9942 13.43% 11.8262 

BPNN 0.9994 3.70% 3.6526 

Case2 
Kriging 0.9837 9.98% 37.7547 

BPNN 0.9989 4.48% 9.8488 
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Table 7 A comparison of inversion values under different noise levels for case 725 

study 1. 726 

Unknown 

variables 

True 

value 

Inversion values under different noise levels 

0 0.5% 1% 2% Relative error 

K1 60.37  58.91  59.46  61.16  61.15  2.42% 1.50% 1.31% 1.29% 

K2  42.84  42.12  41.73  41.72  42.18  1.67% 2.58% 2.61% 1.54% 

K3 50.17  49.28  48.52  48.58  50.01  1.78% 3.29% 3.17% 0.31% 

H1 19.09  19.10  19.04  19.06  19.27  0.06% 0.24% 0.18% 0.96% 

H2 16.11  16.05  15.97  16.01  16.27  0.40% 0.87% 0.64% 0.97% 

S1T1  34.25  34.65  34.82  35.37  36.50  1.16% 1.66% 3.26% 6.57% 

S1T2 57.07  57.20  57.35  57.66  58.79  0.24% 0.49% 1.04% 3.01% 

S1T3 5.80  5.48  5.59  5.64  5.56  5.49% 3.63% 2.78% 4.19% 

S1T4 31.76  31.80  31.84  31.99  32.71  0.15% 0.25% 0.74% 3.00% 

S1T5 18.14  18.21  18.24  18.31  18.63  0.39% 0.55% 0.96% 2.73% 

S2T1  82.07  81.45  81.67  82.48  84.62  0.76% 0.50% 0.49% 3.10% 

S2T2 22.18  21.02  20.99  21.10  21.86  5.22% 5.37% 4.87% 1.44% 

S2T3  74.35  75.69  75.95  76.44  77.69  1.80% 2.15% 2.81% 4.49% 

S2T4 4.92  4.86  4.85  4.74  4.84  1.37% 1.48% 3.76% 1.78% 

S2T5  15.84  15.95  16.00  16.12  16.29  0.73% 1.06% 1.81% 2.86% 
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Table 8 A comparison of inversion values under different noise levels for case 728 

study 2. 729 

Unknow

n 

variables 

True 

value 

Inversion values under different noise levels 

0 0.5% 1% 2% Relative error 

K1 45.93 44.94  45.44  45.07  46.01  2.15% 1.07% 1.87% 0.17% 

K2  46.54 46.68  47.28  46.83  47.92  0.29% 1.59% 0.62% 2.97% 

K3 32.11 32.08  31.91  32.05  31.73  0.08% 0.62% 0.20% 1.19% 

K4 44.23 44.56  43.79  44.35  42.95  0.75% 0.98% 0.26% 2.89% 

S1T1  38.05 37.48  37.59  37.85  38.14  1.48% 1.22% 0.51% 0.23% 

S1T2 32.24 32.84  32.55  33.10  32.42  1.84% 0.95% 2.65% 0.55% 

S1T3 24.96 26.75  26.46  26.89  26.48  7.18% 6.01% 7.74% 6.09% 

S1T4 5.17 4.89  4.85  4.93  4.77  5.44% 6.33% 4.79% 7.82% 

S1T5 25.42 26.48  26.29  26.69  26.42  4.18% 3.43% 5.03% 3.94% 

S2T1  31.15 31.17  31.21  31.38  31.48  0.08% 0.19% 0.74% 1.07% 

S2T2 39.94 40.17  40.12  40.65  40.58  0.57% 0.43% 1.76% 1.59% 

S2T3  51.5 51.77  51.74  52.00  52.00  0.53% 0.47% 0.97% 0.97% 

S2T4 49.47 48.91  48.81  49.51  49.36  1.13% 1.33% 0.09% 0.21% 

S2T5  31.53 33.54  33.30  33.41  33.03  6.38% 5.61% 5.97% 4.75% 

S3T1 27.49 27.61  28.03  28.01  28.75  0.43% 1.96% 1.90% 4.59% 

S3T2 26.93 27.33  27.88  27.68  28.80  1.47% 3.52% 2.76% 6.95% 

S3T3  5.95 5.97  6.14  6.11  6.38  0.27% 3.15% 2.66% 7.13% 

S3T4 30.5 30.97  31.18  31.16  31.70  1.54% 2.21% 2.16% 3.92% 

S3T5  23.7 23.05  24.32  24.06  26.06  2.77% 2.59% 1.49% 9.95% 
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Table 9 Mean relative errors of the two case studies under different noise levels. 731 

case 
Different noise levels 

0 0.5% 1% 2% 

case1 1.58% 1.71% 2.03% 2.55% 

case2 2.03% 2.30% 2.33% 3.52% 

 732 

 733 
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